

Borchert • Golmie • Rouil • Su – Draft 1.0

Utilities in the GMLPS
Lightwave Agile Switching

Simulator
(GLASS)

Version: Draft 1.0

 Table of Tables

Borchert • Golmie • Rouil • Su – Draft 1.0 i

TABLE OF CONTENTS

TABLE OF TABLES ... II

1 INTRODUCTION ... 1

2 THE CLASS GOV.NIST.ANTD.SSF.UTIL.NETUTIL... 1

2.1 THE NODES...1

2.2 THE LINKS..2

2.3 SIMULATION CONTROL..2

2.4 TOPOLOGY CONVERSION ..3

3 THE CLASS GOV.NIST.ANTD.OPTICAL.UTIL.NETUTIL.. 3

4 THE CLASS GOV.NIST.ANTD.OPTICAL.UTIL.NODEUTIL... 3

4.1 OPTICAL NETWORK INTERFACE CARDS (ONICS) ... 3

4.2 THE LINKS..4

5 THE CLASS GOV.NIST.ANTD.OPTICAL.UTIL.LINKUTIL.. 5

6 THE CLASS GOV.NIST.ANTD.OPTICAL.UTIL.PATHUTIL ... 6

6.1 CREATION OF CONNECTIONS AND ROUTES ...6

6.2 GETTING INFORMATIONS...7

7 THE CLASS GOV.NIST.ANTD.MERLIN.UTIL.ALGOUTIL .. 9

7.1 EXECUTING ALGORITHMS..9

7.2 GETTING STATISTICS...9

8 THE CLASS GOV.NIST.ANTD.MERLIN.UTIL.BACKUPUTIL 10

8.1 BACKUP LINK ...11

8.2 BACKUP ROUTE ..12

8.3 OTHER TOOLS...12

9 THE CLASS GOV.NIST.ANTD.MERLIN.UTIL.CONNECTIONUTIL........................... 14

 Table of Tables

Borchert • Golmie • Rouil • Su – Draft 1.0 ii

9.1 CREATING/DELETING CONNECTIONS ...14

9.2 SETTING THE SWITCHES .. 14

9.3 CONFIGURING THE CONNECTIONS..15

9.4 MORE TOOLS..16

10 THE CLASS GOV.NIST.ANTD.MERLIN.PROTOCOL.UTIL.LINKSTATETABLE 17

11 THE PACKAGE GOV.NIST.ANTD.MERLIN.ALGORITHM.ROUTING.UTIL 17

11.1 THE CLASS GRAPH..17

11.2 THE CLASS VERTEX ..17

11.3 THE CLASS EDGE ..17

TABLE OF TABLES

Table 1 The nodes in the Net...1

Table 2 The links in the Net ..2

Table 3: Manipulation of the running simulation ...2

Table 4 ONICs in node..3

Table 5 Links attached to a node...4

Table 6 Nodes and interfaces attached to a link ...5

Table 7 Finding a connection ..7

Table 8 Information about connections..8

Table 9 Running algorithms for one connection ..9

Table 10 Algorithm statistics...10

Table 11 Backup link tools..11

Table 12 Working with the switches..14

Table 13 Using connections ..15

 Introduction

Borchert • Golmie • Rouil • Su – Draft 1.0 1

1 INTRODUCTION

This document presents some useful classes, which provides an easy access to the information

located in the GLASS framework.

2 THE CLASS GOV.NIST.ANTD.SSF.UTIL.NETUTIL

This class contains methods that provide access to the elements of a Glass instance.

All the methods located in this class are static.

2.1 THE NODES

Multiple functions allows the user to retrieve the nodes depending on the type wanted:

Table 1 The nodes in the Net

���������	�
���������
public static Vector getOXCs(Glass net) A Vector of OXC in the net.

public static Vector getOXCEdgeRouters(Glass net) A Vector of OXCEdgeRouter in the net.

public static Vector getLSRs(Glass net) A Vector of LSR in the net.

public static Vector getRouters(Glass net) A Vector of Router in the net.

public static Vector getHosts(Glass net) A Vector of Host in the net.

public static Vector getNonOpticalNodes(Glass net) Non optical nodes (Router and Host).

public static Vector getNodes(Glass net) All the nodes of the net.

public static Host getNode(int id, Glass net) The node with the given id or null.

public static Host getNodeOfIP (int ip, Glass net) The node with the given IP address. The IP

address is located in the NIC (Network

interface card).

public static EventManager getEventManager(Glass

net)

The EventManager for the given net.

The class EventManager is a special node in the GLASS framework. This node is used to handle the

scripted events, and is also used by the GLASS-TSC (Topology and Simulation Creator) to interact

with the simulation.

 The class gov.nist.antd.ssf.util.NetUTil

Borchert • Golmie • Rouil • Su – Draft 1.0 2

2.2 THE LINKS

Table 2 The links in the Net

���������	� �����������
public static Vector getOpticalLinks(Glass net) A Vector of optical links in the net.

public static Vector getNonOpticalLinks(Glass net) A Vector of non-optical links in the net.

public static Vector getLinks(Glass net) A Vector of all the links in the net.

public static link getLink(int id, Glass net) The link with the given id or null .

Note: In the SSF framework, the link does not have an id. The GLASS framework requires an id in

all optical links. Here fore GLASS also allows the link to have an id but it is not mandatory. So to

retrieve a link that does not have an id, use getLinks (Glass net) or use another method (depending if

you know the node or not). This method returns a list of all li nks and the developer has to determine

the correct id on his own.

2.3 SIMULATION CONTROL

The following methods are used by the GLASS-TSC to control the simulation run.

Table 3: Manipulation of the running simulation

���������	� ���! #"%$'&
public static void stopSimulationProgess(Glass net) Pauses the simulation by blocking the

EventManager (so that the discrete event

simulation is in a pause mode).

public static void ResumeSimulationProgress(Glass

net)

Resumes the simulation of the given net after

it has been paused.

public static void setSimulationSpeed (Glass net, int

slpTime)

control the simulation speed. The slpTime is

a value between 0 (for no delay) and 100 (to

stop the simulation).

 The class gov.nist.antd.optical.util.NetUtil

Borchert • Golmie • Rouil • Su – Draft 1.0 3

public static long getSimulationTime (Glass net) Returns the current simulation time in

simulation ticks. To convert the ticks into

real time, divide it by the static attribute

“Glass.frequency” .

2.4 TOPOLOGY CONVERSION

Sometimes it is useful to have the topology information in a table. NetUtil provide a method that

returns a matrix.

public static int[][] getTopologyMatrix (Glass net) returns the topology in a matrix of ids. Each line

of the result is as follow: [Node1_ID; Node2_ID; Link_ID]. Note that it only includes the optical

links.

3 THE CLASS GOV.NIST.ANTD.OPTICAL.UTIL.NETUTIL

This class has been deprecated. Instead use the class gov.nist.antd.ssf.util .NetUtil.

4 THE CLASS GOV.NIST.ANTD.OPTICAL.UTIL.NODEUTIL

This class contains methods to facil itate the access of information that are contained in a node.

4.1 OPTICAL NETWORK INTERFACE CARDS (ONICS)

The following methods helps to retrieve one or all the optical interfaces of a node.

Table 4 ONICs in node

(�)�*�+�,	- .�)�*�/�0�1
public static Vector getONICs (Host node) All the optical interfaces of a node.

public static ONIC getONIC(Host node, int onicID) The ONIC of the given id in the given host

or null if there is no such ONIC in the given

host.

public static ONIC getONICfromIP(Host node, int

onicIP)

The ONIC of the given ip in the given host

or null if there is no such ONIC in the given

host.

 The class gov.nist.antd.optical.util.NodeUtil

Borchert • Golmie • Rouil • Su – Draft 1.0 4

public static ONIC getONICofPort(Host node, int

port)

The ONIC that contains the given port in the

given host or null i f there is no such port in

the given host (see Note 2).

public static ONIC getONIC(Host node, Fiber fiber) The ONIC of the given host that is attached

to the given fiber or null if there is no ONIC

attached to the fiber.

public static ONIC getONIC(Host node, Lambda

lambda)

The ONIC of the given host that is attached

to the given lambda or null if there is no

ONIC attached to the lambda.

Note1: a public HashTable (called interfaceAdresses) is available in the host where the values are the

network interfaces of the node (NIC and ONIC).

Note2: The port is used to identify a fiber in an ONIC. As opposed to the fiber id, which is unique in

an ONIC, the fiber port id is unique in a node.

4.2 THE LINKS

The NetUtil class also provides easy ways to access the links connected to a given node.

Table 5 Links attached to a node

2�3�4�5�6	7 8�3�4�9�:�;
public static Vector getOpticalLinks(ExtRouter

node1, ExtRouter node2)

A Vector of optical links that connect the 2

given nodes (must be LSR, OXCEdgeRouter

or OXC).

public static Vector getOpticalLinks(ExtRouter

forNode)

A Vector of links connected to the given

node.

public static OpticalLink getLink(Host node, int

onicID)

The optical li nk connected to the ONIC

represented by its id in the given node or null

if no such ONIC exists.

 The class gov.nist.antd.optical.util.LinkUtil

Borchert • Golmie • Rouil • Su – Draft 1.0 5

public static Fiber getFiber (Host node, int onicID,

int fiberID)

The fiber (described by the ONIC-id and the

fiber-id) in the given node or null i f no such

fiber.

public static Lambda getLambda (Host node, int

onicID, int fiberID, int lambdaID)

The given lambda (described by the ONIC

id, fiber id and lambda id).

Note1: The id of an interface (NIC and ONIC) is unique inside a node.

Note2: The id of a fiber is unique in an ONIC.

Note3: The id of a lambda is unique in a fiber.

5 THE CLASS GOV.NIST.ANTD.OPTICAL.UTIL.LINKUTIL

This class contains easy access for components attached to a given link.

Table 6 Nodes and interfaces attached to a link

<�=�>�?�@	A B�=�>�C�D�E
public static int[] getNodeIDs (_link link) An array of the node ids that are attached to

the given link.

public static ONIC getONIC(OpticalLink link, int

nodeID)

The ONIC that attach the given link to the

node, represented by its id, or null i f the node

does not exist or if the link does not connect

the node.

public static boolean areSameAttachedNodes

(OpticalLink link1, OpticalLink link2)

True if the links connect the same nodes.

Note: The class is SSF.Net._link (subclass of SSF.Net.link), which would forbid the use of instance

of the class SSF.Net.link, but the Glass framework is creating the SSF.Net._link object for regular

links in lieu of link SSF.Net.link Objects. This means the user can give any link that has been created

during the simulation.

 The class gov.nist.antd.optical.util.PathUtil

Borchert • Golmie • Rouil • Su – Draft 1.0 6

6 THE CLASS GOV.NIST.ANTD.OPTICAL.UTIL.PATHUTIL

This class is useful when working with connections, routing and path over optical networks.

6.1 CREATION OF CONNECTIONS AND ROUTES
FHGJI�K�LMI'N�O'P�LMI�QSRUTMI�FVLXW
public static OpticalConnection createRouteObject (ExtRouter source, ExtRouter dest,

QualityOfService qos) has been deprecated because it creates a OpticalConnection object and not a

route. Use the method createOpticalConnection instead. Y[ZJ\�]�^M\	_a`b^�c%dV]�efY�g'h�h�\�d!^#c%g'hji
public static OpticalConnection createOpticalConnection(ExtRouter source, ExtRouter dest,

QualityOfService qos) creates a connection object between the source and the destination with the

given quality of service. This method does not compute any algorithm but the return value is required

as an input for the routing and wavelength algorithm. k[lJm�n�oMm'p'q�r�oMm'sUlJqjtvuwq	xym	zb{
public static void createRouteFromNodes(int[] nodesId,OpticalConnection oRoute) creates the

structure for a route inside the given optical connection. This is because a route is composed of a

Vector of gov.nist.antd.optical.util.PtPBundle and that GLASS facilitates the implementations of are

only dealing with IDs. If an algorithm computes a route using a list of node ids, then a call to this

method will generate the correct internal data.

public static void createRouteFromNodes(Vector nodes,OpticalConnection oRoute) creates the

internal data for the given optical connection using the Vector of nodes that compose the route.

If the Vector of nodes does not create a route from the source to the destination of the given optical

connection, an IllegalDataException will be thrown. |[}J~����M~'�'�����M~'�U}J�j���H�����b�b�

public static void createRouteFromLinks(int[] linksId,OpticalConnection oRoute) creates the data

inside of the given optical connection (oRoute) using the list of link ids that represents the route from

the source to the destination of the connection.

public static void createRouteFromLinks(Vector links,OpticalConnection oRoute) creates the data

inside of the given optical connection (oRoute) using the list of links that represent the route from the

source to the destination of the connection.

 The class gov.nist.antd.optical.util.PathUtil

Borchert • Golmie • Rouil • Su – Draft 1.0 7

To remove a connection, one way is to call the following method:

public static boolean deleteConnection(OpticalConnection oRoute) removes the given optical

connection from the PathContainer that stores it.

6.2 GETTING INFORMATIONS

Table 7 Finding a connection

���������	� �����������
public static OpticalConnection getRoute(Glass net,

int id)

Has been deprecated, use getConnection.

public static OpticalConnection getConnection

(Glass net, int id)

The connection that has this id or null if no

such connection is available.

public static OpticalPath[] getAllPaths(OpticalLink

link, PathContainer container)

An array of all the OpticalPath where the

given link is used in the given PathContainer.

The array can be of size 0 if the link is never

used by any connection.

public static OpticalConnection[] getAllRoutes

(OpticalLink link, PathContainer container)

Has been deprecated. Use

getAllConnections instead.

public static OpticalConnection[] getAllConnections

(OpticalLink link, PathContainer container)

Returns an array of all the OpticalConnection

where the given link is used in the given

PathContainer. The array can be of size 0 if

the link is never used by any connection.

public static OpticalConnection getRouteOfLambda

(Glass net, Lambda lambda)

Has been deprecated, use

getConnectionOfLambda.

public static OpticalConnection

getConnectionOfLambda (Glass net, Lambda

lambda)

The connection that is using the given

lambda or null if no connection is using it.

returns public static PathContainer[]

getPathContainers(Glass net)

All the path containers of the given network.

 The class gov.nist.antd.optical.util.PathUtil

Borchert • Golmie • Rouil • Su – Draft 1.0 8

Note: The class PathContainer is used by an algorithm to store the computed routes. This is the

location where protocols can retrieve available connections.

Table 8 Information about connections

���������	� �������� �¡
public static int getAvailableId(Glass net) an id that is not used by any connection. This

is useful because the connection id is unique

in the all system.

public static boolean isRouteIdUsed(Glass net, int id) Has been deprecated, use

isConnectionIdUsed.

public static boolean isConnectionIdUsed(Glass net,

int id)

True if the given id is already used.by

another connection.

public static boolean contains(OpticalConnection

route, OpticalLink link)

True if the given connection is using the link

in its path.

public static boolean contains(OpticalConnection

route, Lambda lambda)

True if the given connection is using the

lambda in its path.

public static int[] getSenderInformations

(OpticalConnection oRoute)

The port id’s used by this connection on the

sender side (see Note 1).

public static int[] getReceiverInformations

(OpticalConnection oRoute)

The port id used by this connection on the

receivers side

public static String getReceiverProtocol

(OpticalConnection route)

The name of the protocol that is attached to

this connection.

Note1: The port id is very important because it represents the information a protocol needs to have in

order to send data through the optical network using the OXCSwitch. There is one port per

OpticalChannel.

 The class gov.nist.antd.merlin.util .AlgoUtil

Borchert • Golmie • Rouil • Su – Draft 1.0 9

public static OpticalChannelSegment getSegment (Glass net, Lambda lambda) returns the

OpticalChannelSegment that is attached to this lambda.

Note2: An OpticalChannelSegment is attached to a lambda and shows that this lambda is used in an

OpticalPath.

7 THE CLASS GOV.NIST.ANTD.MERLIN.UTIL.ALGOUTIL

This class provides tools for algorithms like executing and computing statistics.

7.1 EXECUTING ALGORITHMS

Table 9 Running algorithms for one connection

¢�£�¤�¥�¦	§ ¨�£�¤�©�ª�«
public static OpticalConnection executeRouting

(OpticalConnection route)

Executes the routing algorithm specified in

the given connection. It also reset all the

previous routes that may have been

computed before in the connection.

public static OpticalConnection

executeWavelengthAssignment (OpticalConnection

route)

Executes the wavelength algorithm specified

in the given connection. The given route

must contain at least one possible route in

order to complete the OpticalPath.

public static OpticalConnection executeRWA (

OpticalConnection route)

executes the Routing and Wavelength

Assignment algorithm (RWA). The RWA

execute the routing and wavelength in one

step.

7.2 GETTING STATISTICS

public static Vector getRoutesUsingAlgo (String algoName, Glass net) returns the Vector of

connections that is using the given algorithm in the given network.

public static int getNoLambdas (Glass net) returns the total number of lambdas in the net.

public static double[] getStatistic (String algoName, Glass net) returns the statistics of the given

algorithm. The values are dependent on the type of the algorithm.

 The class gov.nist.antd.merlin.util .BackupUtil

Borchert • Golmie • Rouil • Su – Draft 1.0 10

Table 10 Algorithm statistics

¬��®�¯�°	± ²��®�³�´�µ
public static double[] getStatisticsFromRouting (

Vector routes)

The statistics of the given set of connections

using the routing algorithm. The result is

average number of hops, blocking

probability, average delay, average distance,

and throughput.

public static double[] getStatisticsFromWavelength (

Vector routes)

The statistics of the given set of connections

related to their wavelength algorithm. The

result is wavelength utilization and the

blocking probabil ity.

public static double[] getStatisticsFromRWA (Vector

routes)

The statistics of the given set of connections

related to the RWA. The result is the average

number of hops, the blocking probabil ity,

average delay, average distance, throughput,

and wavelength utilization.

8 THE CLASS GOV.NIST.ANTD.MERLIN.UTIL.BACKUPUTIL

This class gives some basic implementation for some functionality that can be useful for developers

of backup/restoration protocols. The user has to understand that these methods may not be executed

under all the possible scenarios. It is primary to give the user an idea on how to use and access the

framework an all the methods may have not been tested yet.

 The class gov.nist.antd.merlin.util .BackupUtil

Borchert • Golmie • Rouil • Su – Draft 1.0 11

8.1 BACKUP LINK

The following set of methods is used for a backup link algorithm:

Table 11 Backup link tools

¶�·�¸�¹�º	» ¼�·�¸�½�¾�¿
public static OpticalConnection getBackupOfLink (int

linkID, QualityOfService qos, Glass net)

Tries to create a backup connection around

the given link (that may has failed), by using

the given Quality of Service. The link is

represented by its id so the network must

also be specified. If the backup is working

the return value is the backup connection.

Also see Note 1.

public static OpticalConnection getBackupOfLink

(OpticalLink link, QualityOfService qos)

Tries to create a backup connection around

the given link (that may have failed), using

the given Quality of Service. If the backup is

working the return value is the backup

connection.

public static OpticalConnection getBackupOfLink

(OpticalConnection route, QualityOfService qos)

Creates a backup of the given connection

using the given QualityOfService. If the

backup is working the return value is the

backup connection otherwise null .

public static void restoreLink (OpticalConnection

route, OpticalLink link, Vector backup)

Updates the route associated to the given

connection by changing the link by the

backup (the Vector contains the list of links

that should replace the link).

public static Vector[] restoreLink (Vector bundles,

OpticalLink link, Vector backup)

Looks into the Vector of bundles (that

represents a route) and replace the given link

by the given backup (the Vector contains the

list of links that should replace the link). This

manipulation may result in the splitting of

 The class gov.nist.antd.merlin.util .BackupUtil

Borchert • Golmie • Rouil • Su – Draft 1.0 12

the bundles. That’s why the result is an array

of new bundles.

Note1: The QualityOfService also contains the algorithms to use.

Note2: All this methods also attached the backup route to the working route. The user has to make

sure that the working route will be attached to the backup route (not done in every methods).

8.2 BACKUP ROUTE

If a protocol needs to create backup routes, then the following methods can be used:

public static OpticalConnection getBackupOfRoute (int routeID, QualityOfService qos, Glass net)

creates a backup of the given connection (specified by its id in the given net) using the given

QualityOfService. If the backup is working the return value is the backup connection.

public static OpticalConnection getBackupOfRoute (OpticalConnection route, QualityOfService qos)

creates a backup of the given route using the given QualityOfService. If the backup is working the

return value is the backup connection.

8.3 OTHER TOOLS

static OpticalConnection runAlgorithms (OpticalConnection oRoute) is not public and is primary

used by the backup methods shown before. It calls the different algorithms of the given connection.

public static void filterRoute (OpticalConnection route) is used to remove redundancy in the route of

the given connection.

For example, if the route is defined by the link list 3-5-7-7-8-9, we can remove the 7 because this

means the message wil l go in both ways of the link. The result will then give a new link list 3-5-8-9

as shown is the following figure:

 The class gov.nist.antd.merlin.util .BackupUtil

Borchert • Golmie • Rouil • Su – Draft 1.0 13

3 15

8

7

9

3 15

8

7

9

Figure 1 Illustration for the method filterRoute()

This method considers that there is only one link per bundle.

public static void replaceSegment(OpticalConnection route, OpticalConnection repRoute) is not

implemented yet. It only checks the compatibil ity of the two given connections.

private static void checkRouteCompatibility (OpticalConnection route, OpticalConnection repRoute)

checks if the connections have the same bandwidth.

public static void mergeRoutes (OpticalConnection route1, OpticalConnection route2) merges two

routes without merging their path but use the current path to get information. Example, the route1 has

a route defined as follow: 1-2-3-4-5-6 and route2 as 3-8-9-10. The result on the connection 1 would

be 1-2-3-8-9-10-6 as shown below:

1 42

8

3

9

5 6

10

1 42

8

3

9

5 6

10

Figure 2 Illustration for the method mergeRoutes()

 The class gov.nist.antd.merlin.util .ConnectionUtil

Borchert • Golmie • Rouil • Su – Draft 1.0 14

9 THE CLASS GOV.NIST.ANTD.MERLIN.UTIL.CONNECTIONUTIL

In this class you can find more tools about the connections.

9.1 CREATING/DELETING CONNECTIONS

public static OpticalConnection createConnection(ExtRouter source,ExtRouter dest,QualityOfService

qos, boolean autoConnect) creates a connection from the source to destination node by using the

information passed within the qos parameter. The boolean attribute autoConnect is used to specify if

the OXC switch at the intermediate nodes must be set-up. For example if specify true if the user just

needs a connection ready to use it. Otherwise if a signaling protocol is used to setup the switches then

autoConnect will be false.

public static boolean deleteConnection(OpticalConnection oRoute) unregisters the potential owner of

this connection and remove the connection from the path container.

9.2 SETTING THE SWITCHES

Table 12 Working with the switches

À�Á�Â�Ã�Ä	Å Æ�Á�Â�Ç�È�É
public static synchronized boolean connectSwitches

(OpticalConnection oRoute)

Tries to setup the switches along the

connection path. In addition to this it also

looks at the available add and drop ports at

the source and destination. If the setup of the

switches is done, it returns true. If an error

occurred, the return value is false.

public static synchronized boolean connectSwitches(

OpticalConnection oRoute, int[] addPort)

is similar to the previous method but the user

specifies the list of add ports that should be

used at the source node. The drop ports at the

destination node are determined according to

the availabil ity.

public static synchronized boolean

connectSwitches(OpticalConnection oRoute, int[]

tries to setup the switches of the given

connection and uses the given add and drop

 The class gov.nist.antd.merlin.util .ConnectionUtil

Borchert • Golmie • Rouil • Su – Draft 1.0 15

addPort, int[] dropPort) ports at the source and destination nodes. If

the set-up is done, it returns true otherwise

false.

public static synchronized boolean

disconnectSwitches (OpticalConnection oRoute)

Disconnects the switches (of the

OXCSwitch) of the given connection to free

the resources. The lambdas of the path will

still be used.

9.3 CONFIGURING THE CONNECTIONS

Table 13 Using connections

 Ê
Ë�Ì�Í�Î	Ï Ð�Ë�Ì�Ñ�Ò�Ó

public static int[] register (ProtocolSession session,

OpticalConnection oRoute)

Tries to register the given protocol to the

given route. At the destination, the receiver

must be the same protocol. See the next

method for more details. If the registration

succeeds the return value is the add ports that

are used by the connection, otherwise it

returns null (see Note 1).

public static int[] register (ProtocolSession

srcSession, String destProtocolName,

OpticalConnection oRoute)

Tries to connect the given protocol to the

given connection. The protocol on the

receiver side is given so that two protocols

with different names can still communicate

(see Note 1).

public static boolean unregister(ProtocolSession

session, OpticalConnection oRoute)

Tries to unregister the protocol that owns the

given connection. If the protocol is not the

owner of the connection then the returned

value is false, otherwise true. This method

does not reset the switches of the route.

 The class gov.nist.antd.merlin.util .ConnectionUtil

Borchert • Golmie • Rouil • Su – Draft 1.0 16

Note1: There are many reasons why the registration can fail:

- The connection is not configured (the switches not done, including the add and drop port), or

no path is available,

- The path is failed and there is no backup or the backup is also failed,

- The connection is already used by another protocol,

- Some data are missing (like OXCSwitch at the source or destination).

If the registration is failed the returned value is null otherwise it is the list of add port that can be used

by the protocol to send data over this connection.

9.4 MORE TOOLS

public static OpticalConnection findConnection(ExtRouter source ,ExtRouter dest ,QualityOfService

qos) is looking at the path containers to find a connection that match the given parameter. If a route

has the same source, same destination and the quality of service is compatible then the returned value

is the found connection. Otherwise null.

public static boolean isCompatible(OpticalConnection route, ExtRouter source, ExtRouter dest

,QualityOfService qos) returns true if the given route has the same source, destination and if the

quality of service is also compatible. The compatibil ity of the quality of service is just defined by the

same algorithms. Also the given connection must not be used for protection purpose and must be

available.

public static int[] getSenderInformations(OpticalConnection oRoute) returns the list of add ports

used at the source for the given route. If the route is not connected to add port or if the path is failed,

then the returned value is null. This method is used to test if a protocol can send information through

the given route and to get the information about the port.

public static int[] getReceiverInformations(OpticalConnection oRoute) is equivalent to the previous

one but on the receiver side. If the path is failed or the connection is not connected to drop ports then

the returned value is null otherwise it represents the ports attached to the receiving protocol.

Note: All the methods in the class ConnectionUtil require that the developer is using the connections

structure of the framework. If the connections created by an algorithm are not put in a PathContainer

and the structure does not follow the one that is provided by GLASS, these methods will not work

properly.

 The class gov.nist.antd.merlin.protocol.util.LinkStateTable

Borchert • Golmie • Rouil • Su – Draft 1.0 17

10 THE CLASS GOV.NIST.ANTD.MERLIN.PROTOCOL.UTIL.LINKSTATETABLE

This class provides a basic table to store link state information. This table can be used to store

information about the failure of lambdas, fibers and links.

11 THE PACKAGE GOV.NIST.ANTD.MERLIN.ALGORITHM.ROUTING.UTIL

This package contains some basic classes to create a graph out of the network. This graph is used in

the routing algorithms to decide which way to use.

11.1 THE CLASS GRAPH

This class is the main class that creates a graph out of the net given in the constructor.

The nodes (class Vertex) of the graph do only have representants of nodes using a subclass of

ExtRouter, which includes the LSR, OXCEdgeRouter, and OXC. This is because the algorithms have

primary been developed to compute routes over an optical network. The arcs (class Edge) represent

the optical links between the nodes. To check if an edge must be created between node A and node B,

the graph checks that there is at least one data lambda in one fiber that would allow a communication

between A and B. It is possible to have more than one edge between two nodes if there are multiple

links between these two nodes.

11.2 THE CLASS VERTEX

As mentioned before, this class is attached to a node (subclass of ExtRouter) and also contains an

attribute dist that is used to represent the distance from a specific node another one. The meaning of

this distance depends one the algorithm (number of hops, delay, physical distance…).

11.3 THE CLASS EDGE

This class is attached to a link and indicates that there is a lambda available between the two attached

nodes. In the edge, the attribute cost is a link, which allows that algorithm to get any information out

of the link (distance, delay, bandwidth…).

Note: These components can be easily extended to create a customized graph depended on different

criteria. For example, the class gov.nist.antd.merlin.protocol.protectionlink.LinkGraph is creating a

graph where there is no checking about the presence of data lambdas in the fibers.

